
The Laplacian in polar coordinates and spherical harmonics

These notes present the basics about the Laplacian in polar coordinates, in any number of
dimensions, and attendant information about circular and spherical harmonics, following in part
Taylor’s book [Ta].

1. The Laplacian in polar coordinates. We introduce general polar coordinates on Rn, with
n ≥ 2, by writing r =

√
x21 + · · ·+ x2n and θ = (θ1, . . . , θn−1). The most important cases are of

course n = 2 and n = 3, but the cases n ≥ 4 are also important in more advanced work. If n = 2
we write more simply θ1 = θ and have

x1 = r cos θ, x2 = r sin θ, (1)

If n = 3 one usually writes something like

x1 = r sin θ1 cos θ2, x2 = r sin θ1 sin θ2, x3 = r cos θ1, (2)

but this involves choosing x3 as a preferred axis and so it is good to postpone this choice and leave
(θ1, . . . , θn−1) unspecified at first.

Returning to the case n ≥ 2 arbitrary, we compute the effect of the Laplacian ∆ = ∂2
x1

+ · · · ∂2
xn

on a function in product form u(r)v(θ) as follows:

∆(uv) = (∆u)v + 2∇u · ∇v + u∆v = (∆u)v + u∆v.

For the first equals sign, we used the general product rule (uv)xjxj = uxjxjv + 2uxjvxj + uvxjxj .
For the second one, we used the fact that the coordinates r and θ are orthogonal: ∇u · ∇v = 0
because ∇u is perpendicular to Sr and ∇v is tangent to Sr, where Sr is the sphere centered at 0
with radius r.

We compute ∆u using the chain rule: since r =
√
x21 + · · ·+ x2n we have

∂xju(r) = u′(r)∂xjr = u′(r)xj/r,

and computing similarly ∂2
xj
u(r) and summing in j gives

∆u(r) = u′′(r) + n−1
r u′(r).

Hence

∆(uv) = (∂2
r +

n−1
r ∂r +∆Sr)(uv),

where ∆Sr denotes the angular derivatives in ∆, i.e. it is defined by the equation ∆Sr(uv) = u∆v
for any functions u = u(r) and v = v(θ).

We can simplify this expression further by relating Sr to S1 by scaling. If c > 0 and ∆f = g,
then by the chain rule ∆f(cx) = c2g(cx). That means ∆Sr = r−2∆S1 , leading us to the formula

∆Rn = ∂2
r +

n−1
r ∂r +

1
r2
∆Sn−1 . (3)

To compute ∆Sn−1 , the Laplacian on the unit sphere, more explicitly, we need to specify the θ
coordinates. In the key cases (1), (2) we have respectively

∆S1 = ∂2
θ , ∆S2 = ∂2

θ1 + cot θ1∂θ1 + csc2 θ1∂
2
θ2 .

But below we extract information from (3) without using any formula for ∆Sn−1 .
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2. Homogeneous harmonic polynomials. A polynomial is homogeneous of degree ℓ if each of
its terms has degree exactly ℓ. For example x31x2 + x43 is homogeneous of degree 4, but x31x2 + x33
is not homogeneous. Such a polynomial is harmonic if its Laplacian is zero. For example x21 − x22
is harmonic but x21 + x22 is not.

Let p(r, θ) = rℓv(θ) be a homogeneous harmonic polynomial of degree ℓ. Then

0 = ∆p = ℓ(ℓ− 1)rℓ−2v(θ) + ℓ(n− 1)rℓ−2v(θ) + rℓ−2∆Sn−1v(θ).

Simplifying yields
−∆Sn−1v(θ) = ℓ(ℓ+ n− 2)v(θ).

Thus v is an eigenvector of ∆Sn−1 with eigenvalue ℓ(ℓ + n − 2). It is a remarkable fact that all
the eigenvalues and eigenvectors of ∆Sn−1 are obtained in this way. The eigenvectors are called
spherical harmonics in general, and circular harmonics when n = 2. Let us examine them one
dimension at a time.

3. Circular harmonics. If n = 2, then ℓ(ℓ+ n− 2) = ℓ2, and using ∆S1 = ∂2
θ we see right away

that the corresponding space of eigenvectors is spanned by {1} if ℓ = 0 and by {cos ℓθ, sin ℓθ} if
ℓ ̸= 0.

We can also replace use of the formula ∆S1 = ∂2
θ with computation of harmonic polynomials,

because this method works well for n ≥ 3 as well.
We begin by writing some bases for the sets of homogeneous polynomials of degree ℓ. These are

{1}, {x1, x2}, {x21, x1x2, x22}, . . . , {xℓ1, x
ℓ−1
1 x2, . . . , x

ℓ
2},. . . .

If ℓ = 0 or ℓ = 1 then they are all harmonic, and so writing x1 = r cos θ and x2 = r sin θ we get
the bases {1} and {cos θ, sin θ} for the corresponding circular harmonics.

If ℓ ≥ 2, then we compute the harmonic ones by writing

0 = ∆
ℓ∑

k=0

akx
ℓ−k
1 xk2 =

ℓ−2∑
k=0

ak(ℓ− k)(ℓ− k − 1)xℓ−k−2
1 xk2 +

ℓ∑
k=2

akk(k − 1)xℓ−k
1 xk−2

2 .

Matching coefficients gives

0 = ak(ℓ− k)(ℓ− k − 1) + ak+2(k + 2)(k + 1). (4)

Thus a0 and a1 may be chosen freely, and after that the other ak are determined by (4). Hence the
space of harmonic homogeneous polynomials of degree ℓ has dimension 2. We can find a basis for
this space by writing

0 = ∆(x1 + ix2)
ℓ

and taking the real part as one basis vector and the imaginary part as the other. The formulas in
terms of x1 and x2 are complicated (they come from Pascal’s triangle and can be written in terms
of binomial coefficients) but the formulas in terms of θ are very nice: we write

(x1 + ix2)
ℓ = rℓeiℓθ = rℓ(cos ℓθ + i sin ℓθ)

and see that a basis is {cos ℓθ, sin ℓθ}.

4. Spherical harmonics. If n = 3, then ℓ(ℓ + n − 2) = ℓ(ℓ + 1). It is not so easy to find the
spherical harmonics using the formula for ∆S2 . It can be done using Legendre polynomials: see
Section 5.4 of [Bo].

In terms of harmonic polynomials, we can compute the bases as follows. If ℓ = 0 or ℓ = 1, as
before we have respectively {1} and {x1, x2, x3}.

If ℓ = 2, we write

0 = ∆(a0x
2
1 + a1x

2
2 + a2x

2
3 + a3x1x2 + a4x2x3 + a5x1x3) = a0 + a1 + a2.

Eliminating a0, we see that a general homogeneous harmonic polynomial of degree 2 can be written

a1(x
2
2 − x21) + a2(x

2
3 − x21) + a3x1x2 + a4x2x3 + a5x1x3,
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and thus a basis is {x22 − x21, x
2
3 − x21, x1x2, x2x3, x1x3}.

By more complicated work of the same kind we can compute bases for ℓ ≥ 3 as well.

5. Pictures. Here is a picture of circular harmonics, from https://mkofinas.github.io/post/

circ_harmonics/:

Above, the first column shows ℓ = 0, the second column shows ℓ = 1, etc. Orange denotes
positive values, and blue denotes negative. The distance to the origin denotes the magnitude of
the function. Thus the first function is constant and positive, the second is positive on the right
and negative on the left, with a maximum at θ = 0, a minimum at θ = π, and zeroes at θ = ±π/2.

Spherical harmonics are most famous as orbitals of electrons. Here is a picture from https:

//no.wikipedia.org/wiki/Fil:Single_electron_orbitals.jpg.

Above, the first row is ℓ = 0, the second row is ℓ = 1, etc.

6. Going deeper. Note that if n = 2, then the dimension of each eigenspace is 2 unless ℓ = 0
in which case the dimension is 1. If n = 3, then the dimension of each eigenspace is 2ℓ + 1. Thus

https://mkofinas.github.io/post/circ_harmonics/
https://mkofinas.github.io/post/circ_harmonics/
https://no.wikipedia.org/wiki/Fil:Single_electron_orbitals.jpg
https://no.wikipedia.org/wiki/Fil:Single_electron_orbitals.jpg
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higher values of ℓ are no more complicated than lower values of ℓ if n = 2, but they are significantly
more complicated if n = 3, and even moreso as n increases. The computation of dimension for
general ℓ and n, including the proof that no eigenspaces are omitted by the method above, is in
Section 7.4 of [Ta].

The labels of the pictures of orbitals match the bases of eigenfunctions found in Section 4 for
ℓ = 0 and ℓ = 1, but for ℓ = 2 there is a discrepancy: the picture for z2 does not match the basis
element x23−x21. This is because that because for orbitals one uses a special basis of eigenfunctions:
one uses a basis of joint eigenfunctions with ∆S1 in the (x1, x2), or (x, y), plane. (Is there a physical
reason for using such a basis?) That means the spherical harmonics in the basis, when restricted
to x21 + x22 + x23 = 1, are also circular harmonics with respect to the x1 and x2 basis. Thus instead
of x23 − x21 one uses 3x23 − 1, which is labeled as z2.
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